Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 185-191, 2008.
Article in English | WPRIM | ID: wpr-728389

ABSTRACT

Activation of c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is an important cellular response that modulates the outcome of the cells which are exposed to the tumor necrosis factor (TNF) or the genotoxic stress including DNA damaging agents. Although it is known that JNK is activated in response to genotoxic stress, neither the pathways to transduce signals to activate JNK nor the primary sensors of the cells that trigger the stress response have been identified. Here, we report that the receptor interacting protein (RIP), a key adaptor protein of TNF signaling, was required to activate JNK in the cells treated with certain DNA damaging agents such as adriamycin (Adr) and 1-beta-D-arabinofuranosylcytosine (Ara-C) that cause slow and sustained activation, but it was not required when treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and short wavelength UV, which causes quick and transient activation. Our findings revealed that this sustained JNK activation was not mediated by the TNF (tumor necrosis factor) receptor signaling, but it required a functional ATM (ataxia telangiectasia) activity. In addition, JNK inhibitor SP-600125 significantly blocked the Adr-induced cell death, but it did not affect the cell death induced by MNNG. These findings suggest that the sustained activation of JNK mediated by RIP plays an important role in the DNA damage-induced cell death, and that the duration of JNK activation relays a different stress response to determine the cell fate.


Subject(s)
Humans , Cell Death , DNA , DNA Damage , Doxorubicin , JNK Mitogen-Activated Protein Kinases , Methylnitronitrosoguanidine , Necrosis , Protein Kinases , Tumor Necrosis Factor-alpha
2.
Experimental & Molecular Medicine ; : 186-195, 2008.
Article in English | WPRIM | ID: wpr-52236

ABSTRACT

Previous studies have demonstrated that rottlerin, a specific PKCdelta inhibitor, potentiates death receptor- mediated apoptosis through a cytochrome c-dependent or -independent pathway. However, its ability to regulate necrotic cell death, as well as the underlying mechanism, remains unknown. We found that in murine fibrosarcoma L929 cells, treatment with rottlerin protected the cells against TNF-induced necrosis, whereas it sensitized the cells to apoptosis induced by co-treatment with Hsp90 inhibitor geldanamycin and TNF, in a manner independent of its ability to inhibit PKC-delta. TNF treatment induced rapid accumulation of mitochondrial superoxide (O2") through the Nox1 NADPH oxidase when cells undergo necrosis. Moreover, pretreatment with rottlerin failed to induce the GTP-bound form of small GTPase Rac1 by TNF treatment, and subsequently suppressed mitochondrial O2(-) production and poly(ADP-ribose) polymerase activation, thus inhibiting necrotic cell death. Therefore, our study suggests that Nox1 NADPH oxidase is a new molecular target for anti-necrotic activity of rottlerin upon death-receptor ligation.


Subject(s)
Animals , Mice , Acetophenones/pharmacology , Benzopyrans/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Superoxides/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL